USB-200 Series: 12-Bit Multifunction DAQ Devices

The USB-205 (shown above with included DAQami™ software) provides eight SE analog inputs, two analog outputs, a maximum sample rate of 500 kS/s, 8 digital I/O, and one event counter input.

Features:

- Eight 12-bit analog inputs
- Sample rates up to 500 kS/s
- Up to two analog outputs
- Eight digital I/O lines
- One 32-bit event counter input
- External pacer I/O
- No external power required
- Available with enclosure and screw terminals or as board-only OEM with header connectors
- ACC-205 DIN-rail kit available

Supported Operating Systems:

- Windows®
- Linux[®]

Overview

Each USB-200 Series device provides eight single-ended (SE) analog inputs, eight DIO channels, one event counter, and external pacer I/O. The USB-202 and USB-205 also provide two analog output channels.

Analog Input

USB-200 Series devices provide eight 12-bit SE analog inputs. The analog input range is fixed at +10 V.

Sample Rate

The maximum continuous scan rate is an aggregate rate. The following table lists the maximum rate per channel when scanning from one to eight channels.

Analog Output (USB-202 / USB-205)

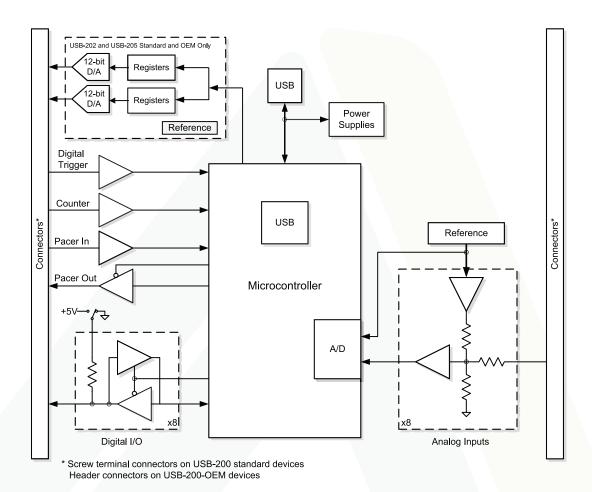
The USB-202 and USB-205 standard and OEM versions have two 12-bit analog output channels. Both outputs can be updated simultaneously at a rate up to 125 S/s per channel. One output can be updated at a rate up to 250 S/s. The output range is fixed at 0 V to 5 V.

External Pacer I/O

Each USB-200 Series device provides one external clock input and one clock output for the analog input pacer. You can connect an external clock signal to the external clock input terminal. When using the internal clock, each device outputs the ADC sample clock.

Max Rate Per Channel (kS/s)*				
No. of Channels	USB-201, USB-202	USB-204, USB-205		
1	100	500		
2	50	250		
3	33.33	166.67		
4	25	125		
5	20	100		
6	16.67	83.33		
7	14.29	71.43		
8	12.50	62.50		

^{*} Sample rates apply to standard and OEM versions


USB-200 Series Selection Chart					
Analog Input 12-bit	Max Sample Rate	Analog Output	Digital Ouput Current per pin		
8 SE	100 kS/s	2	±24 mA		
8 SE	500 kS/s	2	±24 mA		
8 SE	100 kS/s	-	±24 mA		
8 SE	500 kS/s	-	±24 mA		
	Analog Input 12-bit 8 SE 8 SE 8 SE	Analog Input 12-bit Rate 8 SE 100 kS/s 8 SE 500 kS/s 8 SE 100 kS/s	Analog Input 12-bitMax Sample RateAnalog Output8 SE100 kS/s28 SE500 kS/s28 SE100 kS/s-		

Measurement Computing Corporation (MCC) DAQ products are now part of the Digilent family of test and measurement solutions. Since 1989, MCC has been a leading supplier of data acquisition solutions that are easy-to-use, easy-to-integrate, and easy-to-support.

USB-200 Series: Overview

Digital I/O

USB-200 Series devices provide eight TTL-level digital I/O lines. Each digital channel is software-selectable for input or output. When configured for input, you can use the digital I/O terminals to detect the state of any TTL-level input.

When configured for output, each digital channel can source/ sink up to ± 24 mA.

Pull-Up / Pull-Down Configuration

Each USB-200 Series device has a user-configurable internal jumper to configure the digital bits for pull-up or pull-down (default).

Counter Input

Each USB-200 Series device supports one 32-bit TTL-level event counter that accepts inputs up to 1 MHz.

Calibration

The USB-200 Series is factory-calibrated. Specifications are guaranteed for one year. For calibration beyond one year, return the device to the factory for recalibration.

USB-200 Series OEM Versions

OEM versions have board-only form factors with header connectors for OEM and embedded applications. All devices can be further customized to meet customer needs.

The OEM versions have the same specifications as the standard devices, but come in a board-only form factor with header connectors instead of screw terminals.

USB-200 Series: Software

Software Support

USB-200 Series devices are supported by the software in the table below.

Ready-to-Run Applications

DAQami™

Data acquisition companion software with drag-and-drop interface that is used to acquire, view, and log data, and generate signals. DAQami can be configured to log analog, digital, and counter channels, and to view that data in real-time or post-acquisition on user-configurable displays. Logged data can be exported for use in Excel® or MATLAB®. For Windows OS.

DAQami is included with the free MCC DAQ Software bundle.

InstaCal™

An interactive installation, configuration, and test utility for MCC hardware. InstaCal is included with the free MCC DAQ Software bundle. For Windows OS.

General-Purpose Programming Support

Universal Library™ (UL) for Windows

Library for developing applications in C, C++, VB, C# .Net, VB .Net, and Python on Windows. The UL for Windows is included with the free MCC DAQ Software bundle.

The UL Python API for Windows is available on GitHub (https://github.com/mccdag/mcculw).

Universal Library™ (UL) for Linux

Library for developing applications in C, C++, and Python on Linux. UL for Linux is available on GitHub (https://github.com/mccdaq/uldaq).

Open-source, third-party Linux drivers are also available for supported MCC devices.

Application-Specific Programming Support

DASYLab®

Icon-based data acquisition, graphics, control, and analysis software that allows users to create complex applications in minimal time without text-based programming. For Windows OS.

DASYLab is available as a purchased software download. An evaluation version is available for 28 days.

ULx for NI LabVIEW™

A comprehensive library of VIs and example programs for NI LabVIEW that is used to develop custom applications that interact with most MCC devices. For Windows OS.

 $\ensuremath{\mathsf{ULx}}$ for NI LabVIEW is included with the free MCC DAQ Software bundle.

MATLAB® driver

High-level language and interactive environment for numerical computation, visualization, and programming. The Mathworks Data Acquisition Toolbox™ allows users to acquire data from most MCC PCI and USB devices. For Windows OS.

Visit www.MathWorks.com for more information about the Data Acquisition Toolbox.

USB-200 Series: Specifications

- · All specifications are subject to change without notice.
- Typical for 25 °C unless otherwise specified.
- These specifications apply to both standard and OEM versions unless otherwise specified.

Analog Input

A/D converter type: Successive approximation

ADC resolution: 12 bits **Number of channels:** 8 SE **Input voltage range:** ±10 V max

Absolute maximum input voltage CHx to GND: ±25 V max

(power on or power off)

Input impedance: 1 M Ω (power on or power off)

Input bias current: 10 V input: -12 μA 0 V input: 2 μA -10 V input: 12 μA

Input bandwidth, small signal (-3 dB)

USB-201/202: 150 kHz USB-204/205: 1.0 MHz Maximum working voltage:

Input range relative to AGND: ±10.1 V max Crosstalk (adjacent channels, DC to 10 kHz): -75 dB

Input coupling: DC Sample rate: Internal pacer:

USB-201/202: 0.016 S/s to 100 kS/s, software-selectable **USB-204/205:** 0.016 S/s to 500 kS/s, software-selectable

External pacer:

USB-201/202: 100 kS/s max **USB-204/205:** 500 kS/s max

Sample clock source: Internal A/D clock Pacer input terminal AICKI

Channel queue: Up to eight unique, ascending channels

Throughput:

Software paced: 33 S/s to 4000 S/s typ, system dependent

Hardware paced:

USB-201/202: 100 kS/s max, system dependent **USB-204/205:** 500 kS/s max, system dependent

Warm-up time: 15 minutes min

Accuracy

Analog Input DC Voltage Measurement Accuracy

Range: ±10 V

Gain error (% of reading): 0.098

Offset error: 11 mV

Absolute accuracy at full scale: 20.8 mV Gain temperature coefficient(% reading/°C): 0.016

Offset temperature coefficient (mV/°C): 0.87

Noise Performance

For peak to peak noise distribution, the input channel is connected to AGND at the input terminal block, and 12,000 samples are acquired at the maximum throughput.

Range: ±10 V Counts: 5 LSBrms: 0.76

Analog Input Calibration

Recommended warm-up time: 15 minutes min

Calibration method: Factory Calibration interval: 1 year

Analog Output (USB-202, USB-205 only)

Resolution: 12 bits, 1 in 4,096 Output range: 0 V to 5.0 V Number of channels: 2

Throughput, software paced: 250 S/s single channel typ, PC dependent Maximum throughput when scanning is machine dependent.

Power on and reset voltage, initializes to 000h code: 0 V, $\pm 10 \text{ mV}$

Output drive, each D/A OUT: 5 mA, sourcing

Slew rate: 0.8 V/µs typ

Analog Output Accuracy:

All values are (\pm) ; accuracy tested at no load.

Range: 0 V to 5.0 V

Accuracy (LSB): 5.0 typ, 45.0 max

Analog Output Accuracy Components:

All values are (±)
Range: 0 V to 5.0 V

% of FSR: 0.08 typ, 0.72 max

Gain error at FS (mV): 4.0 typ, 36.0 max

Offset (mV): 1.0 typ, 9.0 max

Zero-scale offsets may result in a fixed zero-scale error producing a "dead-band" digital input code region. Changes in digital input code at values less than 0x040 may not produce a corresponding change in the output voltage. The offset error is tested and specified at code 0x040.

Accuracy at FS (mV): 5.0 typ, 45.0 max

Digital I/O:

Digital type: TTL Number of I/O: 8

Configuration: Each bit may be configured as input (power on default)

or output

Pull-up configuration: The port has $47 \text{ k}\Omega$ resistors that may be configured as pull- up or pull-down with an internal jumper. The factory configuration is pull-down.

Digital I/O transfer rate (system-paced): 33 to 4000 port reads/writes per second typical, system dependent

Input low voltage threshold: 0.8 V max Input high voltage threshold: 2.0 V min

Input voltage limits: 5.5 V absolute max, -0.5 V absolute min,

0 V recommended min

Output high voltage: 4.4 V min (IOH = -50 μ A), 3.76 V min (IOH = -24 mA) Output low voltage: 0.1 V max (IOL = 50 μ A), 0.44 V max (IOL = 24 mA)

Output current: ±24 mA max

External Digital Trigger:

Trigger source: TRIG input

Trigger mode: Software-selectable for edge or level sensitive, rising or falling edge, high or low level. Power on default is edge sensitive, rising edge.

Trigger latency: 1 µs + 1 pacer clock cycle max

Trigger pulse width: 125 ns min

Input type: Schmitt trigger, $47 \text{ k}\Omega$ pull-down to ground Schmitt trigger hysteresis: 1.01 V typ, 0.6 V min, 1.5 V max Input high voltage threshold: 2.43 V typ, 1.9 V min, 3.1 V max Input low voltage threshold: 1.42 V typ, 1.0 V min, 2.0 V max Input voltage limits: 5.5 V absolute max, -0.5 V absolute min,

0 V recommended min

USB-200 Series: Specifications and Ordering

External Pacer Input/Output:

Terminal names: AICKI, AICKO

Terminal types:

AICKI: Input, active on rising edge

AICKO: Output, power on default is 0 V, active on rising edge

Terminal descriptions:

AICKI: Receives pacer clock from external source

AICKO: Outputs internal pacer clock

Input clock rate:

USB-201/202: 100 kHz max **USB-204/205:** 500 kHz max

Clock pulse width: AICKI: 400 ns min AICKO: 400 ns min

Input type: Schmitt trigger, $47 \text{ k}\Omega$ pull-down to ground Schmitt trigger hysteresis: 1.01 V typ, 0.6 V min, 1.5 V max Input high voltage threshold: 2.43 V typ, 1.9 V min, 3.1 V max Input low voltage threshold: 1.42 V typ, 1.0 V min, 2.0 V max Input voltage limits: 5.5 V absolute max, -0.5 V absolute min,

0 V recommended min

Output high voltage: 4.4 V min (IOH = $-50 \mu A$), 3.80 V min (IOH = $-8 \mu A$) Output low voltage: 0.1 V max (IOL = $50 \mu A$), 0.44 V max (IOL = $8 \mu A$)

Output current: ±8 mA max

Counter:

Pin name: CTR

Counter type: Event counter Number of channels: 1

Input type: Schmitt trigger, $47 \text{ k}\Omega$ pull-down to ground

Input source: CTR screw terminal

Resolution: 32 bits

Maximum input frequency: 1 MHz

Counter read/write rates (software paced): 33 to 4,000 reads/writes per

second typ, system dependent High pulse width: 25 ns min Low pulse width: 25 ns min Schmidt trigger hysteresis: 1.01 V typ, 0.6 V min, 1.5 V max Input high voltage threshold: 2.43 V typ, 1.9 V min, 3.1 V max

Input high voltage limit: 5.5 V absolute max

Input low voltage threshold: 1.42 V typ, 1.0 V min, 2.0 V max **Input low voltage limit:** -0.5 V absolute min, 0 V recommended min

Memory:

Data FIFO: 12 K (12,288) analog input samples

Non-volatile memory: 2 KB (768 B calibration storage, 256 B UL user data,

1 KB system data)

Power:

Supply current: 150 mA typ, 500 mA max (including user voltage, DIO and

AICKO loading)

Total quiescent current requirement for the device, which includes up to 10 mA for the Status LED. This value does not include any potential

loading of the digital I/O bits, AICKO, or user voltage.

User voltage output terminal (+VO): 4.5 V min, 5.25 V max

User voltage output current: 100 mA max

Environment:

Operating temperature:

All USB-200 Series devices except the USB-201-OEM: 0 °C to 55 °C

USB-201-OEM: -40 °C to 85 °C max Storage temperature: -40 °C to 85 °C max Relative humidity: 0% to 90% non-condensing

Mechanical:

Signal I/O connector

Standard versions: Two banks of screw-terminal blocks

OEM versions: Two 2 × 8 0.1 in. pitch headers, labeled W1 and W3

Dimensions $(L \times W \times H)$

Standard versions: $117.86 \times 82.80 \times 28.96$ mm $(4.64 \times 3.26 \times 1.14$ in.) max **OEM versions:** $98.30 \times 76.71 \times 14.61$ mm $(3.87 \times 3.02 \times 0.575$ in.) max

Order Information

Hardware

Product Part No. Description USB-202 6069-410-008 USB-based DAQ device with eight 12-bit analog inputs, 100 kS/s sampling, two 12-bit analog outputs, and 8 digital I/O lines; includes USB cable and MCC DAQ software USB-205 6069-410-009 USB-based DAQ device with eight 12-bit analog inputs, 500 kS/s sampling, two 12-bit analog outputs, and 8 digital I/O lines; includes USB cable and MCC DAQ software USB-201-OFM 6069-410-178 Board-only USB-based DAQ device with eight 12-bit analog inputs, 100 kS/s sampling, and 8 digital I/O lines USB-204-OEM 6069-410-181 Board-only USB-based DAQ device with eight 12-bit analog inputs, 500 kS/s sampling, and 8

digital I/O lines

Accessories

Product	Part No.	Description				
ACC-205	6069-240-005	DIN-rail kit; standard devices only				
Software also available from Digilent						
Product	Part No.	Description				
DASYLab	6069-810-000	lcon-based data acquisition, graphics, control, and analysis software				

